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Abstract 

The entropy-dynamics method seeks maxima for the 
entropy of the electron density for N atoms in a 
crystal cell, when the Fourier amplitudes are fixed, 
but their phases are unknown. By analogy with 
molecular dynamics, the effective potential energy is 
the negative entropy V --- - NS. The kinetic energy is 
proportional to the squared velocities of the electron 
densities at grid points in the map. It reduces to a 
sum of Fourier-mode rotor energies. Each rotor 
angle experiences a couple equal to the phase gradi- 
ent of S, and local dynamical equilibrium yields a 
Boltzmann distribution of S. Discrete phase angles 
(e.g. signs) are treated as quantized rotor modes. The 
distributions depend on a popularity function of the 
entropy histogram. Trial calculations have been 
made of phase averages and correlations in a centro- 
symmetric projection of the membrane protein 
bacteriorhodopsin. The maximum-entropy solution 
and the correct solution do not always coincide. 

1. Introduction 

The well known maximum-entropy method for 
refining electron-density maps (Gull & Daniell, 1978; 
Collins, 1982; Wilkins, Varghese & Lehmann, 1983; 
Skilling & Bryan, 1984; Gull, Livesey & Sivia, 1987) 
assumes that the most probable set of phases consist- 
ent with given structure-factor amplitudes from a 
random collection of atoms is the set which yields 
the density map with the highest entropy. This criter- 
ion is closely related to the triplet, quartet and higher 
cluster probability distributions used in small- 
molecule direct methods (Karle & Hauptman, 1950; 
Klug, 1958; Giacovazzo, 1980; Bricogne, 1984). The 
calculation of a maximum-entropy map with fixed 
guide phases for a given limited set of reflections is 
easy (Collins, 1982; Levine, 1980; Gull & Daniell, 
1978; Navaza, 1985; Prince, Sj61in & Alenljung, 
1988; McLachlan, 1989; Bricogne & Gilmore, 1990) 
but difficult problems remain. 

(i) The entropy function has many maxima, some- 
times separated by deep minima (for example, 
between two enantiomorphs). 

(ii) Procedures for optimizing the phases (for 
example, Newton-Raphson steps, conjugate gradi- 
ents, least squares) usually terminate at the nearest 
maximum. 

(iii) The many entropy maxima must, therefore, be 
explored from several starting points. 

(iv) There have been no systematic studies to 
verify, even in the simplest cases, whether the 
maximum-entropy phase set is the same as, or close 
to, the correct solution. 

Most successful phasing procedures now use 
multiple solutions: random starts (Sheldrick, 1990; 
Sj61in, Prince, Svensson & Gilliland, 1991), magic 
integers (White & Woolfson, 1975; Main, 1977; Gia- 
covazzo, 1980) or tree searches (Gilmore, Bricogne & 
Bannister, 1990; Dong et al., 1992). Simulated 
annealing (Kirkpatrick, Gelatt & Vecchi, 1983; Shel- 
drick, 1990; Subbiah, 1991) has been used to explore 
both reciprocal space and real space. 

The problem of multiple solutions occurs in other 
fields, especially in calculations of the structure of 
protein molecules in solution. Here, the energy (or 
free energy) has enormous numbers of local minima 
(Levinthal, 1968; Levitt, 1982). Monte Carlo 
methods, simulated annealing and molecular 
dynamics (McCammon & Harvey, 1987; Allen & 
Tildesley, 1987) are now powerful tools for exploring 
protein conformations. 

In this paper the object is to apply a similar 
dynamical approach to the exploration of entropy 
maxima in the space of phases. The essence of the 
method is to introduce a fictitious entropic tempera- 
ture and a fictitious kinetic energy for the system of 
unknown phases. The kinetic energy acts as a heat 
reservoir which allows the phases to move freely 
between adjacent entropy maxima. The fictitious 
potential energy is the negative entropy. 

Here we outline the basic principles of phase dyna- 
mics and describe simple test calculations on a small 
centrosymmetric object, the two-dimensional projec- 
tion of the membrane protein bacteriorhodopsin 
(Bullough & Henderson, 1990; Henderson & Unwin, 
1975). These tests suggest that dynamics is useful for 
exploring the neighbourhood of a starting phase set. 
Enumeration of all possible phases for the strongest 
reflections shows that, although the correct solution 
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is not the same as the maximum-entropy solution, it 
does lie near the top of the distribution of entropies 
taken over all possible phase sets. 

2. The rotor model 

2.1 Monte Carlo methods and molecular dynamics 

Entropy dynamics, like molecular dynamics, exe- 
cutes a Brownian motion over the accessible neigh- 
bourhood of the current phase variables, moving 
continually from one maximum to another. 

The simplest molecular simulation is the Monte 
Carlo method, typified by the Metropolis algorithm 
(Metropolis, Rosenbluth, Rosenbluth, Teller & 
Teller, 1953; McCammon & Harvey, 1987; Allen & 
Tildesley, 1987). At any instant the system has an 
energy E and a temperature T. A possible move is 
then considered in which certain atoms would have 
given displacements and the energy would increase 
by a predicted amount AE. If AE is negative the 
move must always be accepted: if AE is positive the 
acceptance is random, with a probability p =  
e x p ( - A E / k T ) ,  where k is Boltzmann's constant. 
During a long succession of trials the system passes 
through every state, staying in each one for a frac- 
tion of the moves given by the Boltzmann distribu- 
tion law f ( E ) = A e x p ( - E / k T ) ,  where A is a 
normalizing factor. Simulated annealing procedures 
(Kirkpatrick, Gelatt & Vecchi, 1983) are used to 
control the temperature: successive graduated cycles 
of heating and cooling tend to lead eventually to the 
global energy minimum 

In classical molecular dynamics N atoms, as part- 
icles with positions ra and velocities va, move under a 
known potential energy function V(rl, r2,...ru). Typi- 
cal components of V are bond stretching, valence- 
angle bending, torsion angles, van der Waals and 
electrostatic energy terms. Each atom also has a 

• l 2 kinetic energy ~mava, where m~ is its mass, and so the 
total energy is the sum of V and the kinetic energy 
W: E = V(r)+ W. The laws of statistical mechanics 
(Hill, 1956; Tolman, 1938) show that in assemblies of 
many atoms the energy of the microcanonical 
ensemble is conserved. The system relaxes to a state 
of thermal equilibrium at a temperature T, where 
each kinetic degree of freedom has a mean energy of 
½kT. The temperature can be controlled over a period 
of time by adjusting the kinetic energy to its expected 
value W-- 3NkT, and Boltzmann's law applies to any 
part of the system, with a distribution 

J(r ,v )  = A ' e x p (  - ~m,,v]/2k T ) e x p [ -  V(rl,...rN)/k ]r]. 
(2.1) 

Although the total energy is conserved the kinetic 
and potential energies separately both fluctuate, and 

the potential energy alone has the Boltzmann distri- 
butionJ(r) = A"exp[-  V(r)/kT]. The system is able to 
jump over potential energy barriers with heights of 
order k T  by borrowing kinetic energy from the 
molecular motions. 

2.2. Entropy dynamics 

In the maximum-entropy method (Jaynes, 1957a,b, 
1983; Levine & Tribus, 1979) the asymptotic prob- 
ability of a set of phases for N atoms distributed 
randomly within a unit cell is proportional to 

f =  exp(NS) (2.2) 

when N is large. Here S is the entropy of the 
maximum-entropy density map generated by the pre- 
scribed Fourier amplitudes with given phases. We 
take the fictitious potential energy for the dynamical 
simulation as 

V = - NS. (2.3) 

Then, in equilibrium at a certain entropic tempera- 
ture, 8, Boltzmann's law will give a phase probability 
distribution proportional to 

f =  exp(NS/O). (2.4) 

We specify the map as an atomic probability distri- 
bution pj on a grid of L equally spaced lattice points 
in the cell, normalized to a sum of N rather than 1. 
Then 

L 

N S =  - ~'pjlogpj, ~_,pj = N. (2.5) 
j = l  j 

Notice that here we ignore correction terms propor- 
tional to N I/2 which come from the saddle-point 
approximation (Bricogne, 1984; Skilling, 1989). Also, 
if we had used the conventional probability p.' = pj/N J 

normalized to unity over the cell, the entropy S ' =  
- ~,jp~logp) would have been equivalent to S except 
for a constant (S = S' - log N). 

Next we assign to each grid point a fictitious 
velocity dp/dt and effective mass/~, giving an effect- 
ive kinetic energy 

W =  Y.½1z(dpfldt) 2. (2.6) 
J 

This reduces to a sum over independent normal 
modes by taking Fourier components of the velo- 
cities. Using a unitary transform we define coeffi- 
cients 

Qh = L -  l/ZYexp(2rcih.xj)pj = Rhexp(i¢) = ah + iflh. 
J (2.7) 

Here the grid has (Lx, Ly, L~) subdivisions along the 
three axes, and the point j with grid indices (jx, jy, L) 
has cell coordinates xj = (x, y, z )=  (jx/Lx, jy/Ly, 
.L/Lz). The index jx takes the values 0, 1, . . . (Lx- 1), 
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and so on. The kinetic energy reduces to 

W=Z~/x  \ dt ] + h \ d t ] ]  

The radial term, proportional to (dRh/dt) 2, is only 
present when IQh] is changing, and vanishes when the 
amplitudes are fixed. The angular term depends on 
the rate of change of phase, and means that each 
mode, h, behaves like a rotor with angular velocity 
o~ = d~oh/dt and an effective moment of inertia lh = 
~lQd 2. The equipartition theorem in statistical mech- 
anics shows that in thermal equilibrium each rotor 

1 2 ~  has an equal mean kinetic energy ~lhtoh 10. Thus 
the strong reflection phases tend to rotate slowly and 
the weak ones rapidly. Comparing the mode ampli- 
tude Qh with the standard crystallographic ampli- 
tudes for equal point atoms 

N 

Eb = N-I/2 ~ exp(2zrih.ra) or Uh = N-l/ZEh, 

,,= 1 (2.9) 

we see that when the grid distribution Pi reduces to N 
spikes there is a precise correspondence, with Qh = 
(N/L)'/ZEb = ( N L -  '/z)U n. 

2.3. Non-linear mixing o f  modes 

The lattice dynamics of an ideal real molecular 
crystal are described very well in terms of 
non-interacting normal modes, or phonons, which 
have a nearly quadratic potential energy. By con- 
trast, the fictitious entropy potential function 
-NS(~0~,~02,...~os) is a highly non-linear function of 
the phase invariants, involving the triplets, quartets 
and higher terms. So the modes are anharmonic: 
they become mixed together during the motion, 
because the angular couples acting on each rotor 
depend on the phases of other rotors that belong to 
its phasing neighbourhoods. Modes collide and scat- 
ter, exchanging energy with the reservoir of kinetic 
energy. 

The entropy gradients in (3.1) are the Lagrangian 
multipliers that belong to the standard maximum- 
entropy solution for the current phases (Gull & 
Daniell, 1978; Wilkins, Varghese & Lehmann, 1983) 
and are obtained immediately from the entropy- 
optimization process. 

3.2. Improper phases and modified entropy 

In practice, negative probability densities occur at 
various grid points when the postulated phase sets 
are physically impossible: that is when they cannot 
be represented by any configuration of point atoms. 
These non-physical sets should have zero probability, 
or infinitely negative entropy, but the classical 
entropy tends to zero as pj ---, 0 and does not exist for 
negative pj. We use a modified entropy function, 
Sin(p), with a 'badness penalty' for negative densities, 
which makes the potential energy - N S  very large at 
these grid points. We choose a small positive cut-off 
density p,, (e.g. Pm - "  0 . 0 l ) ,  and then select either 

S,,,(p) = -plogp,  

i fp  _> p,,, or 

Sin(p) = -pmlogpm + (Pro- p)(1 + logp,,,) 

- (p,, - p)2/pm , (3.2) 

if p < p,,. The modified form is a quadratic function 
which matches the value and gradient of the classical 
entropy when p = Pm and passes through Sm(O)= O. 
Another useful entropy function is the Fermi-Dirac 
entropy, in which the particle density at each grid 
point cannot exceed unity: SFD(P) = --plogp 
--(1 --p)log(1 --p). This has a similar modified form 
S,,,FD(P) -- [S,,,(p) + S,,,(1 - p)]. 

3.3. Approximating the maximum-entropy solution 

In practice it is expensive to compute a precise 
updated maximum-entropy map after each small 
phase increment, and we have used a gross approxi- 
mation, which can be removed later: this is to hold 
all the inactive Fourier components fixed at zero 
amplitude. The result is that the estimated entropy is 
always below its correct optimal value. 

3. Mode dynamics 

3.1. Equations o f  motion 

We start with given phases ~0h and their angular 
velocities, toh. Each rotor has an angular momentum 
Jh = lhWh, where the moment of inertia Ih is fixed, 
and it experiences a couple Ch = --0 V/O~on. Thus the 
equations of motion are 

(dJh/dt) = C~ = N(OS/O~oh) 

= N[ah(OS/Ol~h) -- #h(OS/Oah)]. (3.1) 

3.4. Discontinuous phases and stepped rotors 

Rotor dynamics is best suited to continuous 
phases, which include the majority of reflections in 
most space groups. This is because the stored kinetic 
energy of the rotor tends to drive the phase con- 
tinuously through local energy maxima and explore 
the whole range of angles. The different angular 
velocities of the modes produce asynchronous sam- 
piing of the phase combinations. 

In many space groups there are special reflections 
where the phases are restricted to certain fractions of 
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2rr, or even to a sign (0 or rr). Stepped phases are 
modelled by using a cont inuous rotor  clock angle )t'h, 
with angular  velocity toh, which carries the kinetic 
energy and trips the phase (p~ when it passes certain 
critical markers.  The ent ropy is a step function which 
jumps  at each marker.  The dynamics  behaves like a 
classical particle colliding with a potential  energy 
barrier. If the rotor  has sufficient kinetic energy to 
jump  over an upward potential  energy step, it conti- 
nues with reduced angular  velocity. Otherwise the 
rotor  is reflected backwards.  

Fig. 1 illustrates the use of  a clock angle for a 
centrosymmetr ic  reflection with allowed phases of  0 
and zr. When X lies between + rr/2 and - z r / 2  the 
phase is ~o = 0, but  it changes to ~o = rr on passing 
these markers.  The dynamics  of  centrosymmetr ic  
phases is almost  equivalent to a two-state Monte  
Carlo flip. The main differences are that  the clock 

(a) Reflection 

q)=~ 

-NS  

E(h) 

W(h) 

~ = O  ~ = R  

(b) Transmission 

- ~  O 
Fig. 1. Dynamics of a steplr .'d- rotor with allowed phases Ch = 0 or 

17-. The phase jumps when the clock angle Xb passes the markers 
at 17"/2 and - 17"/2. The total energy available to the rotor, E(h), 
is the sum of - NS and the kinetic energy W(h) = ½(Ibo~). In (a) 
the kinetic energy is too small to overcome the entropy step and 
the motion is reflected at each marker. The phase remains 
trapped at ~0~ = 0. In (b) the rotor slows down at the step but 
continues with a reduced angular velocity. The phase alternates 
between 0 and ~r. 

angles determine the order  of  the flips in time, and 
the potential  energy gives a causally determined out- 
come to each event. 

The s tepped-rotor  model applies to any number  of  
restricted phase angles, and is a useful approxi-  
mat ion  for treating the mot ion  of  cont inuous  phases. 
It ensures that  the fictitious energy is conserved at all 
times. 

3.5. Sign flip entropies 

With a centrosymmetr ic  object, the entire mot ion  
reduces to a succession of  sign flips, one mode at a 
time. It is also possible to control  the selection of  
active modes. At any time a mode may be either 
clamped with a fixed sign, rotating,  or switched off, 
with an ampli tude set to zero. Thus,  considering a 
single mode h with all the other  modes k set to signs 
gk, the variable sign gh may  take the three values 0, 
+_1, with corresponding entropies So(h), S+(h),  
S_(h)  for the whole system. In an active mode the 
current  actual sign may  flip to the opposite value, 
and the subsequent mot ion  depends on an impor tan t  
quant i ty ,  the reversal entropy defined as 

Srev(h ) = Sactual(h)- Sopposite(h)= + [ S + ( h ) -  S_(h)].  

(3.3) 

Another  impor tan t  event is the switching on of  an 
inactive mode h from an initial ampli tude of  zero to 
its full current  ampli tude and positive or negative 
sign. The resulting 'switching-on entropies '  are 
So+(h) and So_(h), where So+(h)=S+(h)-So(h) 
and S0- (h) = S_ (h) - So(h). Introducing a further 
constraint  normal ly  reduces the total  entropy,  hence 
So+ (h) and So-(h)  are usually both  negative. 

At  a temperature  0 the mean kinetic energy of 
each rotor  is ½0, and so modes with ISrev(h)] >> 0 will 
tend to move into their max imum-en t ropy  settings, 
with stable fixed phases, while those modes with 
ISrev(h)[ ,~ 0 will continue to flip rapidly. At an 
ent ropy max imum all modes  will have positive values 
of  Srev(h ). 

The actual calculation of  the reversal en t ropy is 
simple, since it only involves changing one mode (a 
single Fourier  component  of  density with its 
symmetry-related companions) .  The densities pj are 
updated  in one operat ion,  and the entropies re- 
computed.  After  many  updates  the small rounding 
off errors in the density accumulate,  and so a full fast 
Fourier  t ransform of the ampli tudes is carried out  at 
intervals to correct for any drift. 

3.6. Undefined signs and likelihood 

In simple ent ropy dynamics  every mode of  interest 
has a well defined sign gh and the effective potential  
energy is V = - N S .  A more  general Bayesian 
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approach is to take V = - N A ,  where NA is the 
logarithm of the likelihood. The active modes are 
now split into two sets: a trial set h~,...hn, with H 
defined signs (g,...gn), and a fluctuating set kl...kx 
with K undefined signs (ll...lK). We wish to calculate 
the likelihood of the trial set signs, averaged over all 
possible signs in the fluctuating set and weighted 
with their correct probabilities. The joint probability 
of a complete set of (H + K) signs g and l is propor- 
tional to 

f(g:l) = exp[NS~x(g:l)] (3.4) 

and is equal to the product of the prior probability 
of the signs/,  times the conditional probability of g 
given /. So Bayes' theorem (Press, 1989) gives a log 
likelihood 

exp[NAn(g)] = (1/Y)exp[NAn~g)] 

Y= Y~exp[NAnx(g)], (3.5) 
g 

where 

exp[NAnx(g)]= ~ exp[NSHr(g:l)] (3.6) 
I = ± 1  

summed over all sign combinations of l~...lx. 
A full calculation of An(g) for fixed values of the 

trial signs g often involves an impracticably large 
sum over 2 K sign combinations of I in the fluctuating 
set, but a simple approximation is possible. We start 
from a reference state in which all the fluctuating 
amplitudes are zero and where the reference entropy 
is Sn(g) = SH~g~...gl-i:O...O). The full entropy 
Snx(g:I), with the fluctuating signs switched on, can 
be expressed exactly as a polynomial in the signs 
(l~...lx). Since lj 2 = 1 the polynomial only contains /./. 
with powers of 0, 1 and 2, and consists of 3 x terms, 
in which Sn(g) is the constant part (powers all zero): 

s , , , , ( g : t )  = S n ( g )  + Y. ' X ( g ) . , .  2 .... flT,t~2...t;:~. 
n = 0 ,  1 ,2  

(3.7) 

The X(g) coefficents describe the entropy changes for 
switching on singlets, doublets, triplets etc. of fluc- 
tuating signs out of the reference state (g:0). For 
example, the singlet terms in sign Ii describe the 
switching-on entropies of mode kl by itself with the 
trial set already fixed and all the other fluctuating 
modes turned off. 

So+ ( k , ) =  X(g),0...o + X(g)2o...o 

S o _ ( k i )  = - X(g)10... 0 + X(g)20... O. (3.8) 

The approximation consists in neglecting all doublet, 
triplet and higher terms, even the quadratic cross 
terms such as X(g)~...ol~12. Then the log likelihood 
becomes 

K 

Agx(g) = Sn(g) + ~', Aj(g) (3.9) 
j = l  

with 

exp[Nag(g)] = exp[NS0 + (kj)] + exp[NSo_ (kj)]. 

(3.10) 

This approximation is analogous to the diagonal 
quadratic approximation (Bricogne, 1988; Gilmore 
Henderson & Bricogne, 1991), in which cross terms 
between different modes are neglected. The likeli- 
hood corrections Aj can each be calculated from the 
reference state by making two sign flips of the mode 
kj, or else from a quadratic approximation to the 
entropy. 

3.7. Making a dynamics run 

An entropy-dynamics run involves several stages. 
The start up, the main run and the conclusion. In the 
start-up stage the active rotor modes are selected, 
usually with a choice between clamped phases, 
rotating phases and inactive terms (zero amplitude). 
A starting temperature is chosen (usually by examin- 
ing the reversal entropies of the rotating modes), 
then motion is initiated. 

The main run consists of 'bursts' of a preset 
number of phase flip events at the current tempera- 
ture, in which the rotor may be either transmitted or 
reflected at the marker point. The total fictitious 
energy is conserved throughout the burst. The states 
of highest entropy may be extracted and saved for 
further use, ignoring all solutions that are too similar 
to ones already found. 

After a burst the temperature may be adjusted, the 
angular velocities reset, and the active modes reselec- 
ted. For example, the best-determined phases might 
be clamped progressively, and the temperature 
lowered till a local absolute maximum of the entropy 
is reached. Here every mode is stable and no further 
motion is possible. 

3.8. Temperature control 

The starting temperature 0 is often set high (e.g. 0 
= 100([Sr¢v])) to randomize the signs, but later an 

automatic control is used. When the temperature is 
too high, almost all modes can flip freely and the 
time-averaged entropy does not increase: when it is 
too low, almost all modes are locked and movement 
ceases. 

In the first level of temperature control we set 
upper and lower targets ~max and Ymin for the frac- 
tion of rotors that flip in M events. If p flips are 
observed, and p > MYmax, the temperature is lowered 
by a certain ratio O--*O/eo, but if p < M ' y m i  n the 
temperature is raised: 0 - ,e00 .  Typically, eo = 1.5 
and M = 500 with Yma, = 0.5 and Ymi, = 0.25. 

The secondary control mechanism is to readjust 
the target ratios Ym-x and Ymin when a temperature 
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Table 1. Numbers of strong reflection amplitudes in 
projected bacteriorhodopsin at 3.9 • resolution 

[FI scaled to standard deviation of 1.0 (Builough & Henderson, 1990). 

Number of reflections Lower limit of !/~ 
I 5.0 
7 4.0 

21 2.5 
57 1.5 
91 1.0 

217 0.01 

Table 2. The 21 strongest reflections in bacterio- 
rhodopsin, with reversal entropies and parities of (h,k) 

S, cv (arbitrary units) was calculated with other modes off. 

Mode i~ S,~ ( h , k )  Even/odd 
I 4.998 1.801 0,8 EE 
2 4.954 0.536 0,4 EE 
3 4.777 1.579 6,5 EO 
4 4.716 1.998 2,6 EE 
5 4.469 1.661 6,3 EO 
6 4.372 - 0.259 4,4 EE 
7 4.231 8.615 1,2 OE 
8 3.957 - 0.268 4,6 EE 
9 3.943 1.183 4,8 EE 

10 3.523 - 0.038 2,5 EO 
11 3.449 4.363 1,9 OO 
12 3.435 1.116 3,4 OE 
13 3.333 - 0.704 4,2 EE 
14 3.276 - 0.848 12,0 EE 
15 3.211 0.231 5,3 OO 
16 3.051 0.842 6,0 EE 
17 2.896 0.609 5,2 OE 
18 2.869 0.043 5,1 OO 
19 2.857 - 0.508 2,2 EE 
20 2.698 0.991 5,4 OE 
21 2.571 2.129 8,0 EE 

plateau is detected (a plateau is recognized when the 
moving average of the temperature becomes close to 
the current value). For example a reduction of both 
ratios by a common factor, er, at each plateau leads 
to a gradual forced cooling with an ultimate state of 
maximum entropy for all the rotating modes. The 
primary and secondary controls are reliable and 
effective, but not always economical, since they work 
by monitoring the sign flip rate in a succession of 
bursts. 

4. Trial calculations 

4.1. Orthorhombic bacteriorhodops& 

A suitable test object is the purple membrane 
proton-pump protein bacteriorhodopsin from Halo- 
bacterium halobium (Henderson & Unwin 1975; 
Henderson, 1977). The orthorhombic form of the 
membrane (space group P2~212: cell dimensions a = 
58.70, b = 75.49, c = 100.50 A,), in projection at 3.9/~ 
resolution, has been solved by electron-microscope 
imaging (Bullough & Henderson, 1990). The image, 
with two-dimensional symmetry pgg, yields 220 
experimentally phased reflections with an average 
phase error of 34.7 ° . The cell contains four copies of 
the seven-helix protein subunit, with the helical rods 
viewed end on. 

The initial aim was to test the dynamics algorithm 
with a small number of strong reflections. We sorted 
the amplitudes of the strong reflections in order and 
scaled each IF[ to a minimum of zero and a stand- 
ard deviation of unity (Table 1). The 21 strongest 
reflections, with amplitudes of 2.5 or more, give a 
useful trial set. This initial set is rather unbalanced 
for refinement purposes because it contains 11 modes 
of the EE parity group (Table 2). 

We began by setting the 21 strong signs to their 
correct experimental values, with all other modes off 
(amplitude zero). Table 2 shows the reversal entro- 
pies Srev(h,k) of these strong modes, and the even/ 
odd parities of h and k, which determine whether a 
sign changes under a half-cell shift of origin. Most of 
the Srev values are positive, as expected for a 
maximum-entropy state, but six out of the 21 are 
negative. Evidently, the signs of the correct map are 
not the same as the maximum-entropy signs, given 
only these 21 amplitudes. However, if we set all the 
217 modes with their correct signs and recalculate 
Srev for the top 21 modes, the values now all become 
positive, and the entropy, based on more complete 
information, does have a true local maximum. 

Fig. 2 shows the time course of a typical dynamics 
run. Here the 21 strong modes are rotating while the 
other background modes are clamped with their 
correct amplitudes and signs. In this run the tem- 
perature started at a high value and then evolved 
under automatic control through three successive 

3 
¢D 

2 

E 
0 

q -1 

-2 1 I I 1 I 
(a) 

28O 

180 i i i i i 
0 30 60 90 120 150 - 

Bursts 
(b) 

Fig. 2. Negative entropy and temperature time courses for dyna- 
mics with 21 rotating strong modes and the rest clamped. (a) 
Logarithmic plot of  temperature # in each burst of  100 events. 
(b) Entropy maxima and minima in each burst. 
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Table 3. Census o f  entropies for the sign combinations 
of  21 strong reflections (2 097 152 sets) compared with 

the correct solution 

The correct solution is ranked against the sorted list of entropies, tr is the 
entropy scaled to a mean of 0.0 and standard deviation of 1.0 over each full 
set of sign combinations. 

S(max)  
S(min)  
S(correct) 
Posi t ion o f  correct  

solut ion 
o,(max) 
~r(min) 
~,(correct) 

O t h e r  m o d e s  
Clamped correct Amplitude off 

- 197.233 - 145.893 
- 343.037 - 191.684 
- 197.233 - 149.688 

I 47884 

2.717 2.265 
- 8 . 4 7 7  - 9 . 9 1 8  

2.717 1.255 

plateaux with decreasing flip rates, as explained 
above. The entropy graph is inverted, since - N S  
corresponds to the fictitious potential energy of the 
system, which tends to a minimum. Notice how the 
entropy fluctuations decay rapidly as the modes 
settle into their equilibrium positions. 

4.2. Enumeration of  sign combinations 

The next experiment was designed to test the 
relationship between the correct signs and the signs 
that yield entropy maxima. We enumerated all pos- 
sible 2097 152 sign combinations of the 21 strong 
modes by using the Gray code (Hamming, 1986). 
This sequence passes once through each state by 
flipping just one sign at a time, and is illustrated 
below for three signs: 

Step Binary digits dk Signs gk 
3 2 1 0 2 1 0 

0 0 0 0 0 1 1 1 

1 0 0 0 1 1 I - 1  
2 0 0 1 0 I - I  - 1  

3 0 0 1 1 I - 1  I 
. . . . . . . . . . . . . . . . . . . . .  

Each binary number generates a sign set gk from 
its ordered digits dk by the rule: if dk + ~ = dk then gk 
= 1, otherwise gk = -- 1. Addition of 1 to the current 
binary number leads to the next sign change at the 
left edge of the succession of 'carried' digits. 

The enumeration was performed twice: once with 
all the other modes clamped at their correct signs, 
and once with all other modes switched off (Table 3). 
In the clamped test the correct solution corresponds 
exactly to the global entropy maximum (of the 
restricted rotating set). In the unclamped test the 
correct solution lies high in the distribution of 
observed entropies, but it is by no means the highest. 

Another point of interest is the shape of the 
statistical distribution of the entropies over the large 
number of sign sets. This is most easily described by 
scaling the entropies in reduced units derived from 
the actual distribution with its mean of Sav and 
standard deviation Sd=v. We define the reduced 

entropy t r (g)= [S (g ) -  Sav]lSdev, and plot the histo- 
grams of or in Fig. 3. These are strongly skewed 
curves with a rather steep and short tail on the 
high-entropy side and a long diffuse tail on the 
low-entropy side. The low side corresponds to the 
worst possible phase sets, where negative probability 
densities exist on many grid points. 

4.3. Entropic thermal equilibria 

When entropy dynamics is run for a long time at 
constant temperature, the entropy and the associated 
phases (or signs) reach a local fluctuating equilib- 
rium. There is an entropic statistical mechanics 
which describes the distribution of entropy and 
phase in the fictitious model. Quantities of interest 
are the mean entropy, the mean values of the signs 
and the correlations between fluctuating signs. We 
work in terms of the reduced entropies tr(g) and a 
reduced temperature ~'= TSd~v/N. The dynamical 
probability of a given sign combination g is then 
proportional to exp[tr(g)/r]. We introduce two useful 
new quantities, the entropic partition function, Z(~-), 
and the statistical density of the histogram of tr, 
O(tr). This last is defined (see Fig. 3) so that the 
number of sign combinations which have entropy 
between tr and tr + dtr is 

dn = O(tr)do'. (4.1) 

The corresponding entropic partition function is 

Z(r) = ~g exp[tr(g)/r] = f,O(tr)exp(tr/r)dtr (4.2) 

integrated over the range Ormi n tO O'ma x. The probabil- 
ity of any sign combination g in the motion becomes 

f (g) = (1/ Z)exp[ tr(g)/ r] (4.3) 

and every dynamical average can then be calculated. 
The entropy density,/2, is a very important quantity. 
First, as it derives from the scaled histogram, the 
allowed range of tr is effectively finite, of order ___ 1, 
which implies that both positive and negative entro- 
pic temperatures can exist (Abragam, 1961). Second, 
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Fig. 3. Histograms of  the scaled entropy o-(g) for combinat ions  o f  
the 21 strong modes. 



82 C O N F E R E N C E  PROCEEDINGS 

Table 4. Thermal  averages f o r  21 strong modes  at a 
reduced temperature r = O. 1 

Modes are classified by even/odd parity of  (h,k). Consensus signs (g,) and 
sign correlation matrices (ggj) are shown. Other modes are switched off. 
Values are multiplied by l0 and rounded to integers. 

(EE) Modes 
Mode number 
Averaged signs 
Correlation matrix 

1 2 4 6 8 9 13 14 16 19 21 
- 4  - 5  - 1  2 - I  - 3  - I  - 7  5 1 8 

I 2 4 6 8 9 13 14 16 19 21 
1 10 6 0 - 4  0 I 0 3 - 3  0 - 3  
2 6 10 I - 4  I 1 I 4 - 4  - 1  - 4  
4 0 1 10 - I  6 0 5 I - I  - 6  - 1  
6 - 4  - 4  - 1 10 - 2  - 4  - t - 1 4 I 2 
8 0 1 6 - 2  10 0 6 1 - I  - 5  0 
9 1 1 0 - 4  0 10 0 2 - 2  - I - 2  
13 0 I 5 - I  6 0 10 I - I  - 5  - 1  
14 3 4 I - I 1 2 I 10 - 4  - I - 6  
16 - 3  - 4  - I  4 - 1  - 2  - I  - 4  10 1 5 
19 0 - I  - 6  1 - 5  - I  - 5  - I  I 10 1 
21 - 3  - 4  - 1  2 0 - 2  - 1  - 6  5 1 10 

Correlation matrices for other parities 
(EO) Modes (OE) Modes 

3 5 10 7 12 20 17 
3 10 - 3 4 + 7 10 - I - I 5 
5 - 3  10 - 2  12 - I  10 6 -1  

10 4 - 2  10 + 17 5 - 1  0 10 
20 - I 6 10 0 

( 0 0 )  Modes 
I I  15 18 

II  10 - 1  - 2  + 
15 - 1 10 2 - 
18 - 2  2 10 - 

the logarithm o f /2  is a fundamental thermodynamic 
variable of the system, which we call the populari ty  
function for the given entropy: 

F(tr) = logO(tr). (4.4) 

The number of times that a given value of the 
entropy is met during a dynamical run depends on 
the shape of the popularity histogram as well as the 
probability factor exp(tr/r). In large systems the 
mean equilibrium entropy (tr(r)) at temperature r is 
the value of tr which maximizes 

O(tr) = tr + rF( t r )  ( r  fixed). (4.5) 

The quantity ~b(tr) is analogous to the negative 
Helmholtz free energy ( - A  = - U  + TS) in normal 
thermodynamics. Its maximum value is ~ -- log Z(r), 
and the condition for a maximum is that d F / d t r  = 
- 1/r. Thus a hypothetical normal distribution curve 
for 12 would give (tr(r)) = 1/r. 

This discussion makes it clear that a dynamics run 
will sample the sign sets in a way which depends on 
the popularity profile of the system. States near the 
entropy maximum are rare and have low popula- 
rities, so they may never be sampled if the tempera- 
ture is too high. 

The thermal averages (g,(r)) from the vector of 
rotating signs g = (gl, g2,...gi4) give a consensus sign 
pattern. For example, when all the other modes are 
clamped at their correct phases, the 21 strong signs 
have mean values which depend on their reversal 

entropies. A complication is that normally most 
signs depend on the choice of cell origin, which is 
undefined when the remaining modes are unclamped, 
so that only the origin-independent set (parity EE) 
has a consensus sign, the rest averaging to zero. 
However, the cross-correlated averages of pairs of 
signs give a useful pair-correlation matrix, with 
elements Go(r ) = (g&) , .  The matrix divides into diag- 
onal blocks for the different origin parity sets, and its 

- eigenvectors describe the principal fluctuations of the 
7_ signs at the given temperature. As an example, Table 
- 4 illustrates the thermal averages for the 21 strong 

modes when r = 0 . 1  and all other modes are 
- switched off. Each average value has been multiplied 

by 10 and rounded off. The right-hand column of 
+ each matrix shows the sign of the dominant eigen- 

vector component in each group. 
Thermal averages, based on many combinations, 

+ yield a much more consistent statistic for the signs 
- than the unique signs of one selected high-entropy 
+ 

- state. 

4.4 Progressive mode  selection 

Once a small starting set of active modes has been 
tested, the dynamics run has gained some informa- 
tion about the most likely phases. To preserve and 
enlarge this information it is then useful to extend 
the active set. The most stable current modes (with 
large magnitudes of Srev) may be clamped to preserve 
their good phases. We have tried several selection 
schemes. In each we assume that the modes have 
been sorted into groups of decreasing IFI and that 
the reversal entropy Srev(h) is known. 

(i) Simple  block extension. The modes are divided 
into groups I, II, III, with group I as the starting set. 
In the second round all group I modes are clamped 
and group II modes rotated: in the third the group II 
modes are also clamped and group III modes 
rotated, and so on. 

(ii) Revision o f  unstable modes.  The least stable 
modes in a large starting set are rotated again in an 
iterative regime until the entropy ceases to increase. 

(iii) Alternate  extension and revision. Here the 
active set is alternately enlarged, by introducing a 
new group, and revised by clamping the current most 
stable modes, according to some rule. For example, 
the number of rotating modes may be successively 
reduced to the least stable 50, 25, 15%... of the active 
set. 

Schemes (i) and (ii) have obvious weaknesses. In 
(i) there is no revision of the phases in earlier groups: 
in (ii) the starting set may be inconveniently large. 
Schemes similar to (iii) are more effective, but in 
practice the outcome of a dynamics run normally 
depends more on the fate of the early sign flips than 
on any ingenious later adjustments. 
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As an example, Fig. 4 shows the temperature and 
entropy time course of a typical long run in which 
the active set of modes has been enlarged according 
to scheme (i). The temperature passes through a 
series of plateaux, with a reheat whenever a new 
mode group is added. The entropy decreases sharply 
as each new group introduces further phase and 
amplitude constraints, but then settles into a new 
range of local maxima. 

5. Discussion 

The original objectives of this work were to find a 
way to explore maximum-entropy phase sets without 
becoming trapped in local maxima: to test whether 
the maximum-entropy solutions correspond to the 
known correct solutions in real situations; to try to 
solve the phases of a simple system ab initio, with the 
bacteriorhodopsin projection as a trial object. 

5.1. Practical trials 

The trials show that entropy dynamics is a feasible 
computational method, but is not yet powerful 
enough to solve a real structure. The equations of 
motion can be solved, the phases do not get trapped, 
and we can reach high-entropy solutions in a reason- 
able time. The practical enumeration of sign com- 
binations shows that the dynamical averages at 
different entropic temperatures are an efficient way 
to summarize the most probable sets of phases; it is 
possible to rank the correct solution against the 
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Fig. 4. A dynamics run with mode reselection. (a) Logarithmic 

plot of  temperature 8 in each burst of  100 events. (b) Entropy 
maxima and minima. 

ensemble of different entropy values. A conventional 
entropy maximization on the same set of signs is 
almost equivalent to a near-zero temperature dyna- 
mics run, and trials with these (not described here) 
show that the run is a short random sequence of 
upward entropy steps, which becomes trapped at 
some fairly high local maximum. 

The trials failed to find the correct solution in the 
restricted set of 21 strong reflections because the 
entropy target function has many higher values 
associated with incorrect sign combinations. A likeli- 
hood target function and a larger set of reflections 
may be needed to give more power. 

5.2. Nature of  the dynamical model 

In essence the approach is simple: to treat negative 
entropy as a fictitious potential energy, and rates of 
change of probability densities as velocities. The 
rotor angular momenta give the motion a directional 
persistence rather than a purely diffusive character. 
The notion of a clock angle that drives a stepped 
phase allows a discontinuous dynamics, essential for 
the special reflections. The rotor model defines the 
kinetic energy only, and it could be used with any 
other crystallographic driving potential such as the 
log likelihood, the residual in Sayre's equation, or 
the R factor. 

5.3. Executing the motion 

The rotor equations of motion are easy to solve, 
since they only need simple calculations of the 
entropy gradients for continuous rotations, or the 
flipping entropies at phase steps. The averages and 
fluctuations can be analysed by standard methods. In 
practical terms, entropy dynamics is as flexible and 
adaptable in use as other Monte Carlo procedures 
(e.g. Sheldrick, 1990). The simple automatic tem- 
perature control described in this paper effectively 
avoids local self-trapping. 

5.4. Thermal equilibria 

The well established principles of statistical mech- 
anics provide a secure logical framework for inter- 
preting the observed trajectories. The active degrees 
of freedom obey Boltzmann's distribution law, and 
the equipartition law for rotor kinetic energies. The 
notion of a transient entropic temperature equilib- 
rium is helpful: the fluctuating phases and phase 
correlations depend strongly on the overall shape of 
the entropy histogram taken over the ensemble of 
phase sets. Here the popularity, F(tr), analogous to 
thermodynamic density of states, is an important 
quantity, which determines the relation between the 
mean reduced entropy o'(r) and the reduced entropic 
temperature, r. 
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5.5. Improvements 

The computational efficiency of the method 
depends on two factors. (a) Calculating the entropy 
change in a single sign flip or phase jump is very 
much less costly than the four or more fast Fourier 
transform steps needed in one iteration of a static 
entropy optimization. (b) The number of unpro- 
ductive events is wastefully high, as in other sto- 
chastic methods. Improved temperature control and 
mode selection still allow great scope for improve- 
ment, and large three-dimensional problems may 
be feasible. As yet, the computer program is primi- 
tive, and many easy technical improvements can be 
made. 

Two of the more fundamental approximations 
need to be reviewed. The first was to set the ampli- 
tudes of inactive modes to zero, rather than use a 
well optimized maximum-entropy map at each step. 
The second was to use a modified entropy function 
at each grid point that had a negative probability 
density. This is intuitively reasonable but lacks statis- 
tical justification. An alternative would be to use 
exponential modelling (Collins, 1982) at each step, 
which avoids negative densities, but add in an 
R-factor penalty. Yet another approach would be 
to allow a weak source of fictitious negative scatter- 
ers. 

Entropy dynamics is no better than other anneal- 
ing methods at recovering from wrong decisions at 
the top of the cooling sequence. Multiple starting 
points and an intelligent tree search need to be 
added. 

5.6. Special significance o f  entropic temperature 

One unique feature of entropy dynamics is the 
analogy between the dynamical Boltzmann factor 
exp(NS/O) for a phase set at an entropic temperature 
O, and the joint probability exp(NS) for the same 
phases in the statistical theory of random point 
atoms. Varying the entropic temperature is anal- 
ogous to altering N, the effective number of atoms. 

• 5.7. Comparison with R-factor dynamics 

An important feature which distinguishes entropy 
dynamics from other stochastic methods is the treat- 
ment of the Fourier amplitudes. In the present model 
the active amplitudes are constrained exactly to their 
known experimental values and the phases are com- 
pletely free, but there is no constraint of atomicity. 
This means that the crystallographic R factor of the 
model system (Blundell & Johnson, 1976) is zero, but 
the densities may be non-physical and negative. The 
phase system can therefore pass freely through a 
non-physical state to tunnel from one feasible solu- 
tion to another. Most other dynamical or Monte 

Carlo methods sample feasible atomic or molecular 
model densities with partially incorrect amplitudes, 
and seek to lower the R factor. Examples are 
molecular dynamics (Briinger, Kuriyan & Karplus, 
1987; Kuriyan, Briinger, Karplus & Hendrickson, 
1989), hard-sphere solvent-region dynamics 
(Subbiah, 1991), and fictitious gas atoms with R- 
factor potentials (Semenovskaya, Khachaturyan & 
Khachaturyan, 1985). 

5.8. How correct is the maximum-entropy solution? 

The example of bacteriorhodopsin gives a simple 
illustration that the maximum-entropy sign combina- 
tions, for a restricted set of strong reflections, with 
no further amplitude information given, can be seri- 
ously wrong. On the other hand, when all the weaker 
reflections were clamped with their correct signs to 
provide extra information, the maximum-entropy 
signs for the strong modes matched the correct solu- 
tion perfectly. Other trials showed that the correct 
solution is usually near the top of the empirical 
entropy distribution. Are these results general? The 
most important question, still unanswered, is 
whether the maximum-entropy solutions and the 
correct solution are the same in essentials, when the 
full set of known amplitudes is considered. 

Experience with other phasing methods suggests 
that the maximum-entropy solutions, if obtainable, 
must converge to correct phases when the constraints 
are over-determined: that is, when the number of 
known amplitudes greatly exceeds the number of 
atomic degrees of freedom, 3N (Sheldrick, 1990). 
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